Corrosion Behavior of Key Materials in Firearm Automatic Mechanisms under Marine Corrosive Environment

GAO Yuan, HU Ming, HE Wei, LI Zhiteng, LI Zhiyuan, ZHANG Yanan

Equipment Environmental Engineering ›› 2026, Vol. 23 ›› Issue (1) : 9-16.

PDF(5888 KB)
PDF(5888 KB)
Equipment Environmental Engineering ›› 2026, Vol. 23 ›› Issue (1) : 9-16. DOI: 10.7643/ issn.1672-9242.2026.01.002
Weapons Equipment

Corrosion Behavior of Key Materials in Firearm Automatic Mechanisms under Marine Corrosive Environment

  • GAO Yuan1, HU Ming1*, HE Wei2,3, LI Zhiteng1, LI Zhiyuan1, ZHANG Yanan1
Author information +
History +

Abstract

The work aims to investigate the corrosion behavior of key firearm automatic mechanism materials in marine corrosive environment and its impact on automatic component performance. Laboratory immersion corrosion tests were conducted and combined with corrosion weight loss analysis, electrochemical measurements, friction coefficient tests, and scanning electron microscopy observations, the corrosion weight loss, surface morphology evolution, electrochemical parameters, and friction coefficient variations of the samples were analyzed. With prolonged testing, the corrosion weight loss rate of the materials accelerated, and the surface morphology progressed from initial pitting and cracks to extensive peeling. The corrosion potential shifted negatively, the corrosion current density increased, and the substrate dissolution accelerated, indicating a decline in corrosion resistance. The friction coefficient increased, resulting in greater motion resistance. The results show that corrosion causes the surface to become increasingly rough, increases the resistance of the automatic mechanism components, and gradually leads to the loss of functionality.

Key words

automatic mechanism materials / 25Cr3Mo3NiNbZr steel / marine corrosion / corrosion kinetics / electrochemistry / corrosion mechanism

Cite this article

Download Citations
GAO Yuan, HU Ming, HE Wei, LI Zhiteng, LI Zhiyuan, ZHANG Yanan. Corrosion Behavior of Key Materials in Firearm Automatic Mechanisms under Marine Corrosive Environment[J]. Equipment Environmental Engineering. 2026, 23(1): 9-16 https://doi.org/10.7643/ issn.1672-9242.2026.01.002

References

[1] 刘静, 黄波, 王晓辉, 等.枪械贮存环境特征与环境影响分析[J].装备环境工程, 2019, 16(8): 76-79.
LIU J, HUANG B, WANG X H, et al.Storage Environment Characteristics and Environment Influence of the Firearms[J].Equipment Environmental Engineering, 2019, 16(8): 76-79.
[2] 刘国孝, 刘国忠, 方晓祖, 等.常规兵器在热带海岛地区腐蚀问题的探讨[J].兵器材料科学与工程, 2016, 39(3): 131-134.
LIU G X, LIU G Z, FANG X Z, et al.Corrosion Problems of Conventional Weapons in Tropical Island[J].Ordnance Material Science and Engineering, 2016, 39(3): 131-134.
[3] 胥泽奇, 宣卫芳.环境工程在轻武器研制生产中的应用[J].装备环境工程, 2005, 2(6): 22-24.
XU Z Q, XUAN W F.Application of Environmental Engineering in the Developing and Manufacturing of Small Arms[J].Equipment Environmental Engineering, 2005, 2(6): 22-24.
[4] 王裕安.自动武器构造[M].北京: 北京理工大学出版社, 1994.
WANG Y A.Automatic Weapon Structure[M].Beijing: Beijing Institute of Technology Press, 1994.
[5] 胡明, 唐月阳, 赵云, 等.舰炮身管海洋服役环境与腐蚀机理分析[J].材料保护, 2022, 55(6): 164-172.
HU M, TANG Y Y, ZHAO Y, et al.Analysis of Marine Service Environment and Corrosion Mechanism of Naval Gun Barrel[J].Materials Protection, 2022, 55(6): 164-172.
[6] 胡浩, 罗耕星.某型舰炮身管表面锈蚀机理[J].兵工自动化, 2019, 38(9): 1-3.
HU H, LUO G X.Surface Corrosion Mechanism of Certain Type Naval Gun Barrel[J].Ordnance Industry Automation, 2019, 38(9): 1-3.
[7] 庞留洋.常规武器装备的腐蚀控制设计[J].腐蚀与防护, 2018, 39(6): 474-479.
PANG L Y.Corrosion Control Design for Conventional Weapon Equipment[J].Corrosion and Protection, 2018, 39(6): 474-479.
[8] 苗建松, 王存宝, 孟慧斌, 等.自行火炮的防腐蚀技术研究[J].新技术新工艺, 2023(10): 36-41.
MIAO J S, WANG C B, MENG H B, et al.Research on Anti-Corrosion Technologies of Self-Propelled Artillery[J].New Technology & New Process, 2023(10): 36-41.
[9] 张贺, 黄毅, 刘科言, 等.盐雾环境对典型步枪自动机运动影响[J].兵工学报, 2024, 45(4): 1082-1093.
ZHANG H, HUANG Y, LIU K Y, et al.Research on the Influence of Salt Spray Environment on the Movement of Typical Rifle Automaton[J].Acta Armamentarii, 2024, 45(4): 1082-1093.
[10] 李玥, 王永娟.浸河水环境对某小口径步枪的动力学影响分析[J].装备环境工程, 2022, 19(6): 18-25.
LI Y, WANG Y J.Dynamic Influence Analysis of a Small-Caliber Rifle in Immersion Water Environment[J].Equipment Environmental Engineering, 2022, 19(6): 18-25.
[11] WEI A, HU J T, LI Y Y, et al.Friction Behavior of 30CrNi2MoVA Gun Barrel Steel after Thermo-Cyclic Treatment: Air and Simulated Seawater[J].Engineering Failure Analysis, 2024, 157: 107948.
[12] 李科, 李天雷, 李星, 等.酸性含硫工况下IN625合金的耐蚀性评价[J].装备环境工程, 2025, 22(2): 133-141.
LI K, LI T L, LI X, et al.Corrosion Resistance Evaluation of IN625 Alloys under Acidic Sulfur-Containing Conditions[J].Equipment Environmental Engineering, 2025, 22(2): 133-141.
[13] 赵朋飞, 郭文营, 文磊, 等.装备典型材料循环盐雾加速腐蚀行为与机理研究[J].装备环境工程, 2024, 21(7): 9-18.
ZHAO P F, GUO W Y, WEN L, et al.Accelerated Corrosion Behavior and Mechanism of Typical Material for Equipment by Cyclic Salt-Spray Test[J].Equipment Environmental Engineering, 2024, 21(7): 9-18.
[14] PANCHENKO Y M, MARSHAKOV A I, IGONIN T N, et al.Long-Term Forecast of Corrosion Mass Losses of Technically Important Metals in Various World Regions Using a Power Function[J].Corrosion Science, 2014, 88: 306-316.
[15] CHEN W J, HAO L, DONG J H, et al.Effect of Sulphur Dioxide on the Corrosion of a Low Alloy Steel in Simulated Coastal Industrial Atmosphere[J].Corrosion Science, 2014, 83: 155-163.
[16] ZHANG W Y, ZHANG T, ZHU Z X, et al.Corrosion Electrochemistry Properties of Thermally Sprayed Zn-Cu-Ti Coating in Simulated Ocean Atmosphere[J].Journal of Materials Research and Technology, 2022, 21: 3235-3247.
[17] 邹妍, 王佳, 郑莹莹.锈层下碳钢的腐蚀电化学行为特征[J].物理化学学报, 2010, 26(9): 2361-2368.
ZOU Y, WANG J, ZHENG Y Y.Electrochemical Corrosion Behaviors of Rusted Carbon Steel[J].Acta Physico-Chimica Sinica, 2010, 26(9): 2361-2368.
[18] WANG B, WANG X X, ZHOU J, et al.Influence of Ultraviolet Illumination on the Corrosion Behavior of 7A04 Aluminum Alloy in Salt Solutions with Different pH Values[J].Journal of Materials Research and Technology, 2024, 32: 3921-3936.
[19] LIU C J, MAO F X, WANG J J, et al.Combined Effect of Chloride and Sulfate Ions on the Corrosion Behavior of Q355B Steel in Simulated Concrete Pore Solution[J].Materials Today Communications, 2024, 40: 109703.
[20] ZHAO Z Y, ZOU Y, LIU P, et al.EIS Equivalent Circuit Model Prediction Using Interpretable Machine Learning and Parameter Identification Using Global Optimization Algorithms[J].Electrochimica Acta, 2022, 418: 140350.
[21] 周鲁军.耐候钢锈层损伤特征及其对腐蚀行为的影响[D].北京: 北京科技大学, 2021.
ZHOU L J.Study on Damage Characteristics of Rust Layer on Weathering Steel and Their Influences on Corrosion Behavior[D].Beijing: University of Science and Technology Beijing, 2021.
[22] BARD A J, FAULKNER L R.Electrochemical Methods Fundamentals and Applications[M].2nd Edition.New York: John Wiley & Sons, Inc, 1980.
[23] SHAHRYARI A, KAMAL W, OMANOVIC S.The Effect of Surface Roughness on the Efficiency of the Cyclic Potentiodynamic Passivation (CPP) Method in the Improvement of General and Pitting Corrosion Resistance of 316LVM Stainless Steel[J].Materials Letters, 2008, 62(23): 3906-3909.
[24] KAMIMURA T, HARA S, MIYUKI H, et al.Composition and Protective Ability of Rust Layer Formed on Weathering Steel Exposed to Various Environments[J].Corrosion Science, 2006, 48(9): 2799-2812.
[25] 张洪江, 李永立, 胡远翔, 等.Cl-和SO42-对水冷壁管材的腐蚀影响[J].腐蚀与防护, 2023, 44(5): 7-12.
ZHANG H J, LI Y L, HU Y X, et al.Corrosion Effects of Cl-and SO42-on Water Wall Tube Material[J].Corrosion & Protection, 2023, 44(5): 7-12.

Funding

; Fund:Doctoral Research Start-up Fund of Liaoning Province (2021-BS-162); Basic Scientific Research Project of Higher Education Institutions of Liaoning Province (LJKZ0273)
PDF(5888 KB)

Accesses

Citation

Detail

Sections
Recommended

/